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Abstract. Learning to interpret sheet music and play musical instru-
ments (piano) remains a significant challenge for beginners, often requir-
ing extensive practice and guidance. Existing platforms lack real-time
feedback and seamless sheet music interpretation, creating inefficiencies
that require a system for accurate note recognition, intuitive guidance,
and reduced cognitive load. To address this, we propose a novel sys-
tem that integrates optical music recognition (OMR) and virtual reality
(VR) to create an immersive piano learning environment. The proposed
approach improves the detection of musical notes by making it scale and
rotation invariant. The detected notes are converted into the correspond-
ing piano keys and sequential instructions. These instructions are then
visualized in a VR environment in Meta Quest 3, where a virtual piano
highlights keys dynamically to guide the user. The experimental results
demonstrate high accuracy in note detection and significant improve-
ments in the learning curve for beginners, reducing cognitive load, and
bridging the gap between sheet music interpretation and piano playing.
This work highlights the potential of combining document image analysis
and VR technologies to revolutionize music education, as well as other
related fields, offering a scalable and accessible solution.

Keywords: Optical Music Recognition - Document Recognition- Vir-
tual Reality - Symbol spotting - Immersive Learning - Music Education.

1 Introduction

Learning to interpret staff notation is one of the most challenging aspects of
music education, particularly for beginners. Unlike textual reading, which pro-
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Fig.1: Schematic representation of the proposed system for immersive music
learning. The Optical Music Recognition (OMR) engine processes staff nota-
tion through pre-processing, segmentation, and output generation to produce a
MusicXML file. This output musicXML file is parsed and is integrated into a
Unity-based virtual piano environment, where keys are highlighted and played
interactively using Meta Quest 3 and virtual hands, enabling users to learn and
practice music in real time.

gresses linearly, music notation simultaneously conveys multiple dimensions of
information, including pitch, rhythm, and expression |28|. For novices, this multi-
dimensionality can be overwhelming. They must memorize note locations on the
staff, understand rhythmic values, and internalize key signatures, all while coor-
dinating the physical act of playing an instrument. Furthermore, sight reading
introduces another layer of complexity, requiring rapid recognition and real-time
response to notation [1]. This disconnect between theoretical understanding and
practical application often delays progress and discourages learners [7]. Studies
have suggested that many beginners struggle to associate musical symbols with
their corresponding actions on an instrument, leading to frustration and slower
learning outcomes [10,/15]. This paper proposes a novel approach that integrates
optical music recognition (OMR) and virtual reality (VR) in a seamless manner
(see Fig. [1]) to bridge this gap and ensure a seamless learning experience.

OMR offers a potential solution by automating the interpretation of musi-
cal notation and converting sheet music to machine-readable formats such as
MIDI or MusicXML [11]. OMR can help beginners by reducing the cognitive
burden associated with manual interpretation, enabling them to focus more on
developing and performing skills [6,241/33]. Recent advances in deep learning and
pattern recognition have significantly enhanced the accuracy and reliability of
OMR, particularly through convolutional neural networks (CNNs), which have
shown high precision in recognizing musical symbols [13]. However, OMR still
faces challenges in handling handwritten notations, degraded sheet music, and
complex polyphonic compositions [4], highlighting the need for further advance-
ments in robustness and adaptability [931].
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Table 1: Summary of Recent works in various related categories.
Category Description Datasets References
Preprocessing |Binarization, mnoise  reduction,|CVC- [26], 3], [18]
deskewing, and staff-line removal MUSCIMA,
for improved readability in scanned| MUSCIMA-++,
or camera-based images. camera-captured
photos
Segmentation |Identifying graphical objects using MUSCIMA++, (12|, ]20],
connected components or deep|DeepScores, |27
learning-based object detection|CPMS
(e.g. Mask R-CNN, stave-aware

methods).
Symbol Recog-|Classifying musical symbols (notes,| MUSCIMA++, [26], [12],
nition clefs, rests) using CNNs, template|Universal Music||29]
matching, or feature-based meth-|Symbol  Collec-
ods. tion
Deep Learning|End-to-end sequence models|DeepScores, 181, 15, [20],
in OMR (CNN+RNN, Transformers) for|Camera-PrIMusS, ([17], [16]

full-score transcription; includes|OpenScore Lieder
multi-dataset training for broader|corpus, synthetic

generalization. GrandStaff
dataset
Post- Reconstructing musical notation|Outputs from| [21], [2]
processing using rule-based methods, graph|earlier datasets

& Assembly approaches, or sequence models.

The document analysis and recognition (DAR) community has looked at this
research problem extensively and proposed techniques, such as binarization, edge
detection, and symbol segmentation, form the backbone of OMR workflows, facil-
itating the detection and classification of musical symbols [24L[31]. Deep learning
approaches, particularly CNNs, have further enhanced OMR by learning hier-
archical characteristics, allowing improved recognition of musical structures in
both printed and handwritten notation [6/9]. Beyond this, immersive technolo-
gies such as augmented reality (AR) and virtual reality (VR) are transforming
education across various domains [14]. These technologies have shown promise in
education by increasing participation, retention, and skill acquisition [19]. In mu-
sic learning, virtual reality environments can simulate instruments, provide real-
time feedback, and create interactive sight-reading exercises without the need for
physical instruments. By integrating VR with OMR in conjunction with tactile
feedback, we can bridge the gap between sheet music interpretation and practical
performance, offering a seamless and intuitive learning experience [22}23,25].

Table [I] provides a comparison of recent OMR approaches, highlighting the
data sets used, the methodologies, the evaluation metrics, and the key findings.
OMR is challenged by a lack of standardized terms and formats, which com-
plicates system interoperability and result comparison. Encoding musical infor-
mation is complex due to the need to interpret a wide range of interdependent
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symbols such as notes, dynamics, and annotations in a two-dimensional space.
Overlapping elements, such as beams and slurs, further complicate segmenta-
tion, potentially leading to transcription errors. Despite advances in machine
learning and deep learning that improve accuracy, issues such as data scarcity
and domain adaptation keep OMR a challenging research field.

This paper presents a document analysis system that integrates OMR and VR
to improve the learning experience of music through the following contributions:

— Methodological: An improved scale and rotation invariant OMR recog-
nition approach is proposed. In addition, a structured pipeline is also in-
troduced to map OMR-extracted data to real-time VR interactions. This
workflow can be used by HCI and Al researchers to design interactive learn-
ing environments by linking document recognition outputs with dynamic
virtual representations.

— Artifact: We develop a prototype software that converts sheet music into
an interactive VR learning interface. This system can be used by developers
and music technologists to create OMR-driven music applications by incor-
porating real-time visual feedback in VR.

— Empirical: We evaluate the impact of OMR-VR integration on learning
engagement and skill acquisition. Educators and researchers can use this
evaluation framework to assess immersive music learning in user studies and
classroom settings.

The rest of the paper is organized as follows. Section [2| presents the frame-
work for music recognition and the algorithm for generating MusicXML. Section
[3] illustrates the results and provides a discussion on the final results. Lastly,
Section [d] wraps up the paper and outlines directions for future research.

2 System Design and Implementation

This section describes the architecture and components of the VR learning envi-
ronment, detailing how each element contributes to the overall user experience.
The design and implementation of our proposed system integrates OMR, and
VR to create an immersive music learning environment. This modular approach
seamlessly transitions from sheet music interpretation to practical instrument
learning in a VR environment.

2.1 Proposed Optical Music Recognition Approach

This methodology, shown in Fig. [2| includes four stages: preprocessing, deep
learning detection, post-processing, and output generation. It integrates clas-
sical image processing (rotation, affine corrections) with deep learning models
Real-ESRGAN (32| for enhancement and dual U-Nets for the segmentation of
staff lines and symbols. By separating staff-line and symbol detection, it utilizes
the music notation structure to convert sheet music into MusicXML for compat-
ibility and piano key generation for auditory or visual feedback. The subsystems



Title Suppressed Due to Excessive Length 5

Real-ESRGAN
=3 1
Rotation | 3 £ :
| =0 ' Aff | i 5| | [RROB £, P
—»| Angle |—»{|Padding|| ! ne F N c z :
Detector [Transformation| i S (;ZZ:)E 0 5 E g
i S
l ==0
T i et
I MusicXML File
Pﬁprocessing Postprocessing
Rotation Image "Ll Symbol | | Layout || Conflict | :\Q/Iusm Ntota:!on
Invariant| [Enhancement| Linking | |Analysis||Resolution econstruction
Piano Keys
Generation
L N
U-Net- 1 32 64 Staff Line Mask * -U-Net- 2 Symbol Mask
1 2

32
132 3 2 3
— [T >
> > — g
o 128
@54

64

—
B 256
28— 128

12

256

L]

Fig.2: A unified framework for music sheet symbol segmentation, illustrating
the preprocessing stage (including rotation correction and Real-ESRGAN en-
hancement), separate U-Net models for staff line and symbol segmentation, and
a postprocessing pipeline that converts the output into MusicXML, enabling au-
tomatic piano key generation.

handle challenges such as scanning imperfections, improving notation details,
and accurate layout analysis.

Preprocessing

Rotation Angle Detector Music scores are frequently scanned at slight angles,
which can degrade the accuracy of recognition. Small rotation errors significantly
hamper staff line and symbol segmentation. Automatic detection ensures that
subsequent convolutional networks see a properly oriented image and can learn
staff/symbol features more accurately. The system first estimates a rotation
angle 0 that best aligns the staff lines horizontally.

We have employed the Hough transform, which is applied on detected staff
lines or edges and then searches for the global maximum in the Hough accumu-
lator space. For image I, E is an edge map, the system solves for

0* = argmaxy Z H(f(x,y,0) (1)

(z,y)
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where H is the Hough accumulator and f(.) the function mapping (x,y) and
0 is the parameter space.

Padding To preserve border regions and avoid losing staff lines near edges, the
image is padded uniformly on all sides. A simple zero-padding method is used.
For I with dimension (H,W), we created a padded image I, with dimensions
(H + 2p, W + 2p).

0, if x or y falls outside I,

L) = { 2)

I(x — p,y —p), otherwise.
Padding ensures that transformations and subsequent downsampling /upsampling
in U-Nets do not cut off relevant musical symbols near the image boundary.

Affine Transformation If the detected rotation angle 8*! = 0 an affine rotation
correction. Proper alignment of staff lines is essential so that the neural networks
(e.g., U-Nets) can focus on learning relevant shapes of staves and symbols rather
than dealing with random rotations.

Image Enhancement Low-quality scans suffer from blur, noise, and compres-
sion artifacts. Real-ESRGAN (Enhanced Super-Resolution Generative Adversar-
ial Network) aims to improve image clarity and resolution before recognition. Let
Grsraan be the be the generator network, parameterized by 6. The enhanced
image I’ is produced by

I' = Ggsraan(I0c) (3)

Internally RRDB (Residual-in-Residual Dense Blocks) provide deeper con-
text and more robust feature extraction for super-resolution. The details of Real-
ESRGAN can be found in this paper [32]. Clearer staff lines and sharper note
heads are crucial for accurate segmentation. Removal of artifacts also reduces
false positives in symbol detection.

U-Net—Based Segmentation The framework introduces two unnet architec-
tures inspired by [34], where U-Net-1 detects staff lines, whereas U-Net-2 detects
musical symbols (notes, clefs, rests, etc.).

U-Net-1 performs the binary segmentation of the image into staff-line vs.
background. I’ the enhanced image be the input to U-Net-1, the output is the
staff-line mask Ms(x,y) € {0,1}

U-Net-1 is a fully convolutional encoder—decoder Ms = fy1(I'), where fy
denotes the parameterized function learned by U-Net-1. The loss function typi-
cally combines a pixelwise cross-entropy and the Dice coefficient to balance class
imbalance.

IEEDY {Wsys log Ms(z,y) +wpkg(1—ys(z,y)) log(l—Ms)} +ALpice (4)

T,y
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U-Net-2 for Symbol Mask: U-Net-2 is similar to an encoder-decoder network
Msym = fu2(I") where Mgy (z,y) € {0,1} indicates whether a pixel belongs
to a music symbol.

Separating staff-line and symbol detection enhances performance by allowing
networks to specialize in distinct feature sets. After recognizing staff lines, a
second pass isolates music symbols like notes, clefs, rests, and accidentals.

(1) Notehead Extraction and Classification: Each notehead is de-
tected, its bounding box measured, and its vertical position mapped to a
pitch. This yields symbol type (7;) for example, note or rest—as well as
pitch and accidental information (Ay). Determining whether a notehead is
solid or hollow (quarter vs. half/whole) sets an initial idea of duration (d;).
— (2) Note Grouping (Chords) and Stem Analysis: The pipeline groups
noteheads that occur together vertically into chords (e.g., multiple noteheads
on one stem) and identifies stem directions. This step pinpoints the time-
overlap among notes and corrects multi-voice or multi-track layouts.

— (3) Symbol Extraction (Accidentals, Clefs, Barlines, etc.): Beyond
noteheads, the pipeline extracts clefs, accidentals, barlines, and other nota-
tion. Accidentals become attributes (A;), barlines help the algorithm infer
measure boundaries, and clefs confirm the pitch mapping.

— (4) Rhythm Refinement (Dots, Beams, Flags): Finally, the pipeline

analyzes beams/flags and dots to determine exact note durations. By count-

ing the number of beams or flags in each group, the system refines 7; (symbol
type) and d; (duration). Once durations are assigned, the set S (of all sym-

bols) is complete: each entry s; comes with a track t;, horizontal position z;,

symbol type 7;, duration d;, and an attributes set A;.

PostProcessing: After obtaining Ms and Mgy the symbol components are
linked, the layout is analyzed, and the conflicts are resolved.

Symbol Linking: Each recognized symbol must be linked as a single unit so that
the system can classify it (e.g., as a note head, rest, clef, etc.). Many symbols may
appear fragmented in multiple connected components. We group the connected
pixels in My, into coherent symbol objects. Contour detection is used to gather
clusters of pixels. Centroids or bounding boxes are computed for each symbol
cluster. C' = {C1, Cs,..,C,}, where each C; is a set of pixels that belong to the
i-th symbol.

Layout Analysis: Music notation is highly dependent on positioning i.e.,, the
line or space in a stave. Layout analysis ensures that each symbol is correctly
associated with its pitch and timing context. To determine how symbols are
arranged relative to the staff line, to which staff lines a symbol belongs, to
vertical alignment of simultaneous notes, and to measure boundaries. We map
the bounding box (Tmin, Ymin, Tmaz, Ymaz), Of each symbol, to its nearest staff
lines in Mg. The vertical position relative to staff lines is used to infer pitch,
while horizontal grouping can align notes in the same chord.
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Conflict Resolution Sheet music is rich with overlapping notation like ledger
lines, accidentals, ties/slurs, so a cleanup step is necessary to refine the final set
of musical symbols. When multiple symbols overlap or ambiguous segmentations
occur, the system must remove or correct spurious classifications. Simple heuris-
tics (e.g., no two note heads can occupy the same staff position at the same
time) or learned rules can be applied. A conflict is flagged when the bounding
boxes overlap beyond a threshold or if the staff position is inconsistent with the
recognized notes.

Music Notation Reconstruction Optical Music Recognition is not complete
until the symbolic representation is generated. MusicXML is a standard, interop-
erable format used by many notation softwares. After segmentation and conflict
resolution, the recognized symbols and their positions must be converted into
an actual music-notation data structure. Each detected symbol is classified as
note head, rest, clef, accidental, etc., by morphological shape matching. The po-
sition on the staff yields pitch; shape (filled, unfilled, presence of a stem/flag)
yields duration. The system assembles the recognized notes, measures, and other
musical directives into a valid MusicXML file.

Output Generation To store the recognized notation in an industry-standard
format for further editing, rendering, or MIDI playback. We employ a rule-based
parser that writes out staves, measures, notes, and directions into MusicXML
tags. The final output is an XML file with complete music information. To
produce a quick reference or basic playback mechanism by mapping detected
pitches to piano key numbers. We convert each note’s pitch class (C, D, E, etc.)
and octave to a piano key index. The detected keys were fed into the virtual
reality system to provide a real-world experience of playing and learning piano.
Algorithm [T]offers a detailed and systematic approach to sorting and aligning
musical symbols, adjusting their timing, and ultimately exporting the entire
composition into a MusicXML format. The procedure is as follows:

— Sort Symbols: Begin with a collection of musical symbols (such as notes
or rests) that are categorized into one or more groups (like layers, staves, or
voices). Each symbol is labeled with a specific position on the x-axis and a
group identifier.

o First, sort these symbols based on their group allocation (e.g., all symbols
in Track 1 followed by Track 2, and so on).

e Then, sort within each group according to their x-axis position from
left-most to right-most.

— Initialize the First Measure: Introduce the necessary symbols (clef, key
signature, and time signature if applicable) at the start of the measure based
on the user-chosen or detected clef and key. Set up internal structures to
handle measures, such as creating a list of measures per track.

— Determine the Alignment Across Tracks: Identify corresponding sym-
bols at each unique x-axis position on different tracks. Develop an alignment
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Algorithm 1 MusicXML Generation Algorithm

1:

12:
13:

14:
15:
16:
17:
18:

19:

20:

21:
22:
23:
24:
25:
26:
27:

28:
29:
30:

31:

32:
33:
34:
35:
36:
37:

38:
39:
40:
41:
42:
43:
44:
45:

Input: Set S = {s1, s2,...,5n} where s; = (t;, i, 7s,d;, A;) represents a musical
symbol
t; € Z1 : track identifier
2; € RT : horizontal position
7 € {1,2,...,I'} : symbol type (note, rest, etc.)
d; € Q" : duration in quarter notes
A; : set of attributes (pitch, accidental, etc.)
Output: MusicXML document X
Phase I: Symbol Ordering and Partitioning
Define total ordering relation < on S where s; < s; <= (t; < t;) V ((t; =

tj) A (@i < zj))

: Sort S according to < to obtain ordered set S’
11:

Partition S’ into equivalence classes T, = {s; € S'|t; = k} for k € {1,2,...,m}
where m = max;{t; }
Phase II: Temporal Quantization
Define quantization function Q : Rt — Q* mapping positions to rational time
points
For each Ty, apply Q to create time-quantized sets T = {(si, Q(z:))|s: € Tx}
Define time signature o = (n,27) where n € Z* and p € {0, 1,2, 3,4}
Let measure duration yu = Z—f in quarter notes
Phase III: Track Alignment
Define alignment function A : RY x Z* — P(S) mapping (position, track) to
subsets of S
Define temporal grid G = {(g;,d:;)} where g; € Q% are alignment points and
8; € QT are durations
For each (z,t) € RT x{1,2,...,m}, compute A(z,t) = {s; € S|(t; = t) A (|Q(zs) —
Q)| <€)}
Construct bipartite graph Gg = (V1 U Vs, &) where:

Vi={(x,t)|3si €S : (ts =t) A (xs =)}

Vo = {Si S S}

€ = {((z, ), )lss € Az, 1)}
Compute maximum bipartite matching M C &£
Phase I'V: Rhythmic Normalization
Define measure map Mumeas : Q7 — ZT x QT mapping time to (measure number,
offset)
For each 71, compute beat positions:

Br = 23;11 dy mod p for sh € T
Apply correction function C : Q* x QT — QT where:

c(d, ) = {d e
w—p0 fB+d>p

Initialize rest insertion set R = 0
For each measure | € {1,2,...,L} and track k € {1,2,...,m}:

Let Six = {5 € Tkl Mumeas(Qx:)) = (1,)}

If Zsiesl,k d; < p, add rest 1, to R with d(ri k) = p — ZS¢eSl,k d;
Phase V: MusicXML Synthesis
Define transformation Txmr : S U R — Xelem mapping musical symbols to XML
elements
Let Xmeas = {(I, X1)|l € {1,2,...,L}} be the set of measure XML elements
For each s; € SUR:

(l7/61) = Mmeas(Q(mi))

Add Txwmw(si) to A7 with offset 3;
Define XML document structure X = (Xhead, Xpart) Where:

Xhead contains part list, metadata, etc.

Xpart = {(Xpart,k7 Xmeas)|k5 € {1, 2, ey m}}
Return X
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mapping where identical x-axis positions across tracks are deemed aligned
(i.e., occurring simultaneously in the music timeline).

— Adjust Rhythms and Insert Rests: To ensure that aligned symbols ini-
tiate simultaneously in the musical score, certain tracks may need to be
divided or extended by inserting rests to match the ’beat position’ of other
tracks. Modify duration or add rests as required, ensuring that the aligned
symbols share the same temporal slot in the final notation.

— Decode and Generate MusicXML: Transform the synchronized collec-
tion of notes and rests, now correctly aligned by beat position, into Mu-
sicXML elements, including measures, attributes (like clef, key, and time
signatures), notes (encompassing pitch, duration, voice), and rests.

2.2 Piano Interface Design in Virtual Reality

The VR design methodology integrates the OMR output with an immersive
virtual piano environment developed in Unity 3D. The system leverages the
Meta Quest 3 headset for visualization and interaction, allowing users to play
the piano with virtual hands. This section details the implementation of the
virtual piano interface, hand tracking, and interaction mechanisms that enable
seamless music learning in VR.

The virtual piano is modeled as a realistic 3D object in Unity, with each
key having individual colliders and animations. The piano keys are tagged as
"PianoKey" to facilitate interaction and are linked to corresponding audio clips
that represent their sounds. The PianoController script manages key interac-
tions, sound playback, and animations. It uses a dictionary (keyMapping) to
map keyboard inputs or hand interactions to specific keys, enabling dynamic
octave switching and precise note identification. When a key is pressed, its ani-
mation is triggered using Unity’s Animator component, simulating the physical
movement of a piano key.

The Meta Quest 3 provides advanced hand-tracking capabilities, which are
utilized to interact with the virtual piano. Each fingertip of the user’s virtual
hands is equipped with sphere colliders tagged as “FingerTip”. These colliders
detect proximity to piano keys and trigger interactions when entering or exit-
ing the key’s collider. A dedicated script (PianoKeyInteraction) handles these
events, playing the corresponding sound, and animating the key when pressed.
This mechanism mimics real-world piano playing by responding to natural hand
movements.

A key highlighting feature is implemented using the PianoHighlightManager
script to assist users in learning sheet music. This script dynamically changes the
color or material of specific keys based on instructions derived from the OMR
output (MusicXML). Keys are highlighted sequentially before being played, pro-
viding visual guidance for learners. The highlighting sequence synchronizes with
the timing of the song, thereby ensuring that users can follow along intuitively.

The system uses spatial audio to enhance immersion. Piano sounds are played
at the location of each keypress using Unity’s AudioSource.PlayClipAtPoint
method. This creates a realistic auditory experience that matches the visual
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interaction. Sound fading techniques are also applied to simulate natural decay
in piano notes. To ensure smooth operation in Meta Quest 3, several optimization
techniques are employed:

— Collider Management: Efficient use of colliders ensures accurate detection
without excessive computational overhead.

— Animation Triggers: Coroutine-based animations minimize performance
impact while maintaining responsiveness.

— Rendering Pipeline: Unity’s lightweight rendering pipeline is used to op-
timize graphics for VR.

When users wear the VR headset, they enter an immersive environment
featuring a virtual piano and sheet music display. The OMR engine processes
input sheet music into MusicXML format, which is fed into Unity to generate
instructions for key highlighting and playback. Users interact with the piano
using their virtual hands by pressing highlighted keys sequentially. The system
provides real-time feedback through animations and audio cues, facilitating an
engaging learning experience.

3 Experiments and Results

This section provides both the qualitative and quantitative outcomes of our
proposed system. Our experiments have been performed using the DeepScores
V2 dataset [30], which focuses on Music Object Detection and includes digi-
tally generated images of sheet music along with their respective ground truth
annotations.

3.1 Rotation Invariant

Fig. [3 illustrates the ability of our system to automatically correct for slight
rotations in scanned music sheets. The top row shows the original image (left)
along with versions that were intentionally rotated by +5° and 4+15°. The bot-
tom row displays the corresponding 're-rotated’ outputs, where the system has
detected each rotation angle and applied an inverse rotation to restore the music
sheet to a proper upright orientation. This demonstrates the rotation invariance
of our approach: if an end user places a sheet at a slight tilt, the system accu-
rately detects and corrects it, ensuring that the final image is properly aligned
for reading or further processing.

3.2 Image Enhancement and Segmentation

Fig. [ presents a three-stage process to transform a blurred music sheet into a
clean and well-segmented score. On the left, the “Blurred Image” shows a typical
degraded scan caused by issues such as low-resolution scanning, camera shake,
or paper wear. These factors obscure fine-notation details, including staff lines,
note heads, and textual markings, making the sheet difficult to read or analyze.
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Fig. 3: Detection and correction of rotational skew in sheet music. The top row
shows the original scan (left) and images rotated by +5° and +15° the bottom
row displays the respective ‘re-rotated’ outputs restored to proper alignment.

In the middle, the “Enhanced Image” illustrates the results of applying Real
ESRGAN, a generative adversarial network designed to infer and reconstruct
lost image details. By reducing noise and sharpening edges, Real ESRGAN sig-
nificantly improves the legibility of the notation. Staff lines and musical symbols
become more defined, bridging the gap between a low-quality scan and a near-
original quality sheet. This enhanced clarity benefits both human readers and
automated systems, such as optical music recognition (OMR), which rely on
clear notation to accurately extract musical information.

Finally, on the right, the “Segmented Image” demonstrates the output of
two U-Net segmentation models: one trained to isolate staff lines and the other
trained to detect symbols. This dual segmentation approach allows for a more
precise separation of notation components, ensuring that important elements,
such as noteheads, rests, and chord names, are correctly identified. Building on
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Fig.4: Enhanced and Segmented Results: From left to right: (1) the original
blurred music sheet, (2) the high-resolution enhanced sheet obtained via Real-
ESRGAN, and (3) the segmented music sheet produced by two U-Net models.

the sharply enhanced image produced by Real ESRGAN;, the segmentation step
achieves higher accuracy, establishing a robust foundation for further tasks such
as transcription, editing, or analysis of the musical score.

3.3 Quantitative Evaluation

Despite advances, handling degraded images remains a challenge in DAR. Noise,
blur, low resolution, and compression artifacts arise from poor lighting, motion,
low-quality sensors, or transmission errors. These challenges hinder traditional
models, which are usually trained in high-quality images, leading to poor per-
formance in degraded images. For quantitative evaluation, we used DeepScores
V2 [30], which contains musical sheet images and segmentation masks. We tested
the proposed approach with Gaussian blur levels from 13 to 39, in increments
of 2, to assess robustness against perturbations. Table [2] shows that the pro-
posed method consistently outperforms the OEMER method, achieving higher
IoU scores and accurately segmenting objects in blurred images. It maintains
high ToU scores (above 0.90) up to blur level 19, while OEMER’s performance
declines as blur increases. For higher blur levels (21 and above), the proposed
method remains reliable, whereas OEMER struggles or fails to detect results
(marked "ND’). This illustrates the superior ability of the proposed method to
manage severe image degradation, offering a more robust solution for blurred
images in the DeepScoresV2 dataset, maintaining accuracy and reliability under
challenging conditions.

Similarly, we also experimented by adding Gaussian, salt and pepper, and
speckle noise at different levels and observed and compared the IOU with the
existing method. Table [3] shows that the proposed method demonstrates supe-
rior noise robustness compared to OEMER for all noise types tested (Gaussian,
Speckle). At lower noise levels (0.01 to 0.1), the proposed method consistently
achieves higher IoU scores greater than 0.91, while OEMER shows a gradual
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Table 2: Comparison of Intersection over Union (IoU) scores between the OE-
MER and the proposed method across varying levels of image blur on the Deep-
ScoresV2 dataset. "ND" indicates no detectable result for the given blur level.

Blur Level| OEMER |[34]|Our Proposed|[Blur Level| OEMER [34]|Our Proposed
13 0.91 0.96 27 0.74 0.89
15 0.89 0.95 29 0.71 0.88
17 0.87 0.94 31 ND 0.62
19 0.84 0.94 33 ND 0.50
21 0.83 0.91 35 ND ND
23 0.81 0.90 37 ND ND
25 0.80 0.90 39 ND ND

Table 3: Comparison of Intersection over Union (IoU) scores between the
OEMER and the proposed method under varying noise types (Gaussian,
Salt Pepper) and noise levels on the DeepScoresV2 dataset. “ND” denotes no
detectable result.

. OEMER |[34] Our Proposed
Noise Level - -
Gaussian|salt pepper|Gaussian|salt pepper
0.02 0.94 0.94 0.96 0.96
0.01 0.93 0.92 0.96 0.95
0.1 0.90 0.91 0.93 0.93
0.2 0.85 0.89 0.91 0.92
0.5 ND ND 0.78 0.74

decline in performance (IoU from 0.94 to 0.87). In particular, at higher noise
levels (0.2-0.5), the proposed method maintains usable IoU results greater than
0.73), while OEMER fails entirely (ND) under severe noise (level 0.5).

3.4 Virtual Environment

Figure [5] refers to the typical scenario of how the virtual world is able to get
the required information from the real world and generate the audio signal,
and highlights the keys to better human-machine interaction. As indicated, the
MusicXML file generated by the proposed approach gives the cue (rel-time in-
structor) to which keys to be highlighted at what pitch. In the VR environment,
such cues are used to highlight the key which the user plays. The interactive
learning environment created by our VR system has shown promising initial
results. The dynamic highlighting of piano keys, derived from the OMR out-
put, provides an intuitive guide for users to follow sheet music accurately. This
feature significantly reduces cognitive load by visually directing users to the
correct keys in real time. Preliminary tests with basic songs such as "Happy
Birthday," "Jingle Bells," demonstrate that the system effectively bridges the
gap between sheet music interpretation and practical piano playing. We have
also experimented with music sheets of popular songs from the interent and ob-
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Fig. 5: Virtual Piano with a highlighted key.

served similar results. The audio files played using highlighted keys closely match
the original compositions, demonstrating the system’s ability to support precise
musical performance. Initial impressions indicate that the VR piano learning
system is both engaging and user-friendly. Its combination of visual guidance
and auditory feedback offers an immersive, interactive music learning experi-
ence. Highlighted keys serve as a real-time instructor, allowing beginners to play
melodies without prior training. This feature enhances accessibility and supports
future studies on learning outcomes, user engagement, and system usability.

4 Conclusion and Future Work

The proposed approach integrates Optical Music Recognition (OMR) with Vir-
tual Reality (VR) to create an immersive music learning environment, making
twofold contributions. Firstly, the OMR engine employs advanced preprocess-
ing techniques, including rotation correction and Real-ESRGAN-based image
enhancement, alongside dual U-Net architectures for staff line and symbol de-
tection. The post-processing steps refine recognition, ensuring adherence to the
musical conventions in the reconstructed MusicXML files with varying resolu-
tion. This makes the proposed approach for the rotation and scale recognition of
OMR invariant. Secondly, the VR component translates this output into an inter-
active Unity-based virtual piano environment using the hand-tracking capabili-
ties of Meta Quest 3. Preliminary tests demonstrate its effectiveness in bridging
theoretical sheet music knowledge with practical piano skills. Future directions
include expanding OMR to support handwritten music, developing mobile VR
applications for accessibility, conducting formal user studies to measure learn-
ing outcomes, and incorporating adaptive learning algorithms and gamification
elements. These advancements aim to establish the system as a scalable tool for
interactive music education.
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