IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. Y, MONTH YEAR 1

Learning Options from Demonstrations:
A Pac-Man Case Study

Marco Tamassia, Fabio Zambetta, William L. Raffe, Florian ‘Floyd” Mueller, and Xiaodong Li

Abstract—Reinforcement Learning (RL) is a machine learning
paradigm behind many successes in games, robotics and control
applications. RL agents improve through trial-and-error, there-
fore undergoing a learning phase during which they perform sub-
optimally. Research effort has been put into optimising behaviour
during this period, to reduce its duration and to maximise
after-learning performance. We introduce a novel algorithm that
extracts useful information from expert demonstrations (traces of
interactions with the target environment) and uses it to improve
performance. The algorithm detects unexpected decisions made
by the expert and infers what goal the expert was pursuing. Goals
are then used to bias decisions while learning. Our experiments in
the video game Pac-Man provide statistically significant evidence
that our method can improve final performance compared to a
state-of-the-art approach.

Index Terms—Reinforcement learning, Temporal Difference
Learning, Options Framework, Learning from Demonstration.

I. INTRODUCTION

Reinforcement Learning (RL) is a paradigm for machine
learning where behaviour is learned by agents through trial-
and-error, as opposed to supervised learning, where algorithms
are provided with labeled data. Researchers have achieved
significant advancements using RL in various fields, including
games [1]], [2]], robotics [3]], and control [4].

Agents using RL techniques (RL agents, hereafter) are of
practical interest because some of them do not require a
model of the environment they act in, which matches most
real world scenarios. To define what a “good” behaviour is,
all that needs to be provided to an RL agent is a reward
signal. To learn an optimal behaviour without prior information,
the RL agent needs time to gather knowledge by interacting
with the environment, via trial-and-error. It is to be expected
that performance during this learning phase is sub-optimal. In
particular, decisions might start out as random and improve
over time until they converge to optimal behaviour.

An important part of RL research is aimed at improving the
performance during this learning phase [5]]. One way in which
this can be achieved is by introducing bias in the decision
process of the agent while it is still taking some random
decisions. Sutton ef al. achieve this by introducing one or
more predefined policies, called “options” that the agent can
commit to for some time [|6]]. It is important that options drive
the agent in a profitable way, making good decisions whose
consequences the agent will take note of. However, if not
well-engineered, this technique may worsen performance [7]].

The authors are with RMIT University, Melbourne VIC, Australia.
E-mail: <first.last>@rmit.edu.au

If properly directed during training, an agent can learn
better options and learn them earlier. Better options make
more effective game players, robots and controllers. Earlier
learning means a shorter training time and fewer interactions
with the environment, which are often costly. These are two
highly desirable characteristics for learning systems.

Hand-crafting options is expensive and error-prone in sce-
narios where human intuition is difficult to encode. This has
prompted work in the automatic learning of options. Notable
approaches are based on frequency of successful trajectories
[8]], detection of bottleneck states [9]], [[10], commonalities of
multiple tasks [[11]], states clustering [[12], graph partitioning
[13]], relative novelty [[14], difficulty for states to be reached
and maintained [[15]], causal analysis of state features [|16]] or
successful trajectories [17] and intrinsic motivation [[18]]. These
approaches all rely on the agent exploring the environment, as
opposed to learning from pre-existing data.

In this work, we introduce a novel algorithm that learns
options from demonstrations provided by experts; that is,
agents familiar with the environment. We investigate whether
options learned with our method can improve performance of
Q-learning, a popular RL algorithm. Here, a demonstration
is a trace of an expert interacting with the environment. The
intuition is that options learned from experts are likely to
produce a good bias for an RL agent learning phase. Other
works on learning options from demonstration have recently
been published: based on the frequency of sub-trajectories [[19],
change of abstractions [20]], human interaction [21].

The method proposed in [21] is closely related to our work,
both because humans were involved and the same test-bed,
the video game Pac-Man, was used. In [21]], participants were
asked to provide a list of sub-tasks useful to play the game;
these sub-tasks were then converted into options. Our approach
differs in that we only require players to play the game in their
usual manner.

Our approach to learning options from demonstrations is to
detect “surprising” decisions made by the experts, infer their
intentions and use them as goals. This idea reflects studies in
cognitive research where infants were observed to get excited
by unexpected events and motivated to explore further [22].

This work builds on our previous work [23]]. In this study
we change the method of selection for detected goals: whereas
previously we used a notion of distance between states, in
this work we select the most frequently detected goals, which
reduces computational time. Furthermore, in this study we use
a more complex test-bed, the video game Pac-Man, which is
more challenging than the simple grid-world previously used.
Finally, we empirically demonstrate that this approach works

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. Y, MONTH YEAR 2

well even when the model of the environment is learned from
the demonstrations themselves, rather than being given as input.

The paper is organised as follows: in Section [II] we give an
introduction to Reinforcement Learning and to the framework
introduced by Sutton et al.; in Section we present our
method for learning options from demonstration; in Section
we present our experiments and report the results and in Section
we summarise and discuss future research directions.

II. BACKGROUND

In this section, we give the background necessary to
understand this work. First, we give an introduction to Markov
Decision Process (MDP) ([I-A), the most common model used
in RL. Then we introduce the Options framework (II-B), which
allows an RL agent to choose among actions and options,
predefined policies that the agent can commit to for some time.

A. MDP and Reinforcement Learning

A Markov Decision Process (MDP) [24] is a model of
a stochastic, stationary environment; that is, an environment
whose response to an agent’s actions is non-deterministic and
whose distribution does not change over time. Formally, an
MDP M is a tuple M = (S, A,T,R,~) where S is a set
of states; A is a set of actions; T : S x A xS — [0,1]
is a function expressing the environment state transition
probabilities; R : S — R is a function associating a reward to
each state; v < 1 is a discount factor used to decrease future
rewards, which encodes the notion of inflation.

At each point in time ¢ an agent senses the state of the
environment s; € S and performs action a; € A in response.
The state of the environment changes stochastically according
to the distribution P(s¢11|st,at) = T(s¢,ay, Se+1). Finally,
the agent receives a reward r, = R(s;+1). The purpose of
an agent is to maximise the discounted, cumulative reward
collected over time: Y, v~'r;. The agent wants to find a
policy 7w : § — A that maximises such reward.

Q-learning [25] finds such a policy by learning the expected
future cumulative reward of taking action a in state s and
behaving optimally — according to its knowledge — afterwards.
This information is encoded in the state-action value function,
or Q-function.

Q-learning updates its estimate of the Q-function at every
state transition, using (s¢, ag, ¢, S¢41):

Q(se,ap) & r + ’Yg?}@(stﬂa a) — Q(st,ar), (1)
where © & y is short for z < x4+ ay and 0 < a < 1 is the
learning rate. This algorithm converges with probability 1 to
the optimal Q-function, provided that each state has a non-zero
probability of being visited.

An agent focusing only on maximising rewards (exploitation)
could be preventing itself from gathering additional knowledge
(exploration) that would allow for better decisions. To provide
the proper degree of exploration over exploitation, an explo-
ration strategy is normally used. In this work, we used the
Annealing e-greedy strategy, which chooses a random action
with probability € and the best (greedy) action with probability
1 — €. The value of € is decreased over time (annealed).

MDP actions are limited in that an agent cannot commit to a
certain behaviour over time, because decisions are independent
of each other; they just depend on the current state. The options
framework addresses this limitation.

B. Options Framework

The concept of an option [6] generalises that of an action
(actions are referred to as primitive actions) to include
temporally extended courses of action. An option, like any
other action, can be chosen by the agent policy; however,
unlike with primitive actions, when an option is chosen, its
internal policy is followed for some period of time.

An option o is defined as a tuple o = (Z, 7, 3) where:

o 7 is the initiation set; that is, the set of states from which

the agent can select option o;

o 7 is the policy to be followed when option o is selected;

e 3: S8 — R expresses the probability of termination of

option o and depends on the state.

When the agent selects a primitive action, the action is
executed normally. On the other hand, when it selects an
option, the option is activated and its policy determines this
and the next actions to be performed; this continues until the
option stochastically terminates. Upon option termination, the
following rule is used to update the state-option value [6]:

Q(se,00) &1+ max Q(st4r,0) — Q(st,01), (2)
where 7 = 7411 + Y7o + ...+ Iryp is the discounted
cumulative reward obtained during the option execution and
O is the set of all actions and options. This rule leads) to
converge to the optimal state-option value function.

Z, w and B can be defined manually or learned algorithmi-
cally. We focus on learning options from expert demonstrations.

III. GENERATING OPTIONS FROM DEMONSTRATION

This section explains how our algorithm learns options from
demonstrations, not requiring interaction with the environment.

Our approach focuses on options that have a goal-based
policy. This is in line with previous work in the area [{8]], [9],
[13]], [14]. The approach we take is slightly different, however,
in that it allows for policies with multiple goals. Each set of
goals is then used to compute the components of an option
(Z,m,p). This allows for more flexibility in choices. Details on
how this is done are given in section [[V-B]

A. Identifying Useful Subgoals

Our procedure requires one or more demonstrations given
as input. We define a demonstration as a sequence of state and
action pairs: ((s1,a1), (s2,a2),...,(Sn,ay)). The first step is
to identify useful sub-goals in the demonstrations.

Our idea is that experts reason through a few, high-
level goals. We aim to identify demonstration sequences of
(si,ai),...,(sj,a;) that can be explained as steps the expert
took to reach a goal, s; ;. That is, the above sequence could
be rewritten as (s;, 75, (5i)),- - -, (55, 7s,,,(s;)) where s,
is a policy that minimises the expected number of steps to
reach state s, 1.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. Y, MONTH YEAR 3

Algorithm 1 Goals extraction; uses a multiset structure, which
is a set where information about the number of occurrences of
each element is preserved.

1: procedure EXTRACT_GOALS(T, demo, p)

2 last_s, _ < last(demo)

3 goals < multiset &
4: prev_s < last_s
5
6

cur_goal + last_s
for all (s, a) in reverse(demo) do
p if s=cur_goal

7]:2(3) — .
0 otherwise
8: 7 < Value_Iteration(T, R)
9: if 7(s) # a then
10: cur_goal < prev_s
11: add cur_goal to goals
12: prev_s < s
13: return goals

Algorithm [I] achieves this by analysing the demonstration
backwards. Because the procedure infers goals from expert
actions, we assume that the experts are competent in the
environment and that this is reflected in the demonstrations
produced. The procedure works as follows:

« the current goal is set to the last visited state;

« the demonstration is analysed backwards, step by step;

e atevery step (s¢, a;), the best action a to reach the current
goal from state s; is computed via Value Iteration [24]]
(lines the model of the environment can be learned
from the samples themselves if not already available);
Value Iteration is a dynamic programming algorithm that
computes a state value function;

o if a; # af, state s;y1 is set as the current goal;

« the current goal is added to the goals multiset; this is to
keep track of how much each goal is used.

The underlying idea is that decisions of the expert that
go against the expectations of the algorithm are intrinsically
interesting. The algorithm tries to infer what the expert goal
was when it took the unexpected action.

Algorithm [I] finds an exact solution only in deterministic
MDPs. In stochastic MDPs, a state and action pair does not
uniquely determine the next state. As a consequence, the next
state in the demonstration is not necessarily the goal that the
expert wanted to achieve. Not knowing the intent of the expert,
we assume that the next state is what the expert wished to

achieve. This is a heuristic that seems to work well in practice.

IV. EXPERIMENTS

This section details the experimental setting that has been
used to test the proposed method. Results of the experiments
are also presented here. The experiments are designed to show
the benefits of using options learned by our algorithm. Notice
that the purpose of this work is not to implement the best
Pac-Man agent but, to show that using options learned from
experts gives learning agents an advantage. These are two
different problems: engineering Pac-Man agents to achieve

the best performance versus autonomously learning how to
effectively play. We choose to focus on the second problem,
and use Pac-Man as a test-bed.

A. Experimental settings

We implemented our framework in Python using the Numpy
libraryﬂ [26]] and parallelized using GNU Paralleﬂ [27].

Q-learning: The discount factor for Q-learning was v = 0.97
(a commonly chosen value [24]]), while the reward peak
for goal-driven policies was arbitrarily set to p = 50. The
exploration strategy used in the experiments is Annealing
e-greedy, with € = 0.1 (also, a common choice [24]). The
annealing schedule is based on the episode number k and is
defined as e(k) = 0.1/(1 + etoto —3). These parameters have
been chosen to create a sigmoid function where most of the
descent happens between episodes 500 and 1500.

Pac-Man: Our algorithm has been tested in the video
game Pac-Marﬂ We used the implementation of Pac-Man
developed by University of California, Berkeley, for their
Artificial Intelligence course [28]f]

In this game, the player controls Pac-Man, an agent moving
in a two-dimensional environment whose purpose is to collect
all the white pills. Pac-Man is chased by a number of ghosts,
each of which will kill Pac-Man if he collides with them. There
are also a number of special capsules that make all the ghosts
scared for a limited period of time. If Pac-Man collides with a
scared ghost, the ghost dies and reappears at the centre of the
game area in a non-scared state. Players receive a score based
on their performance:

e -1 at every time-step;

e +10 for every eaten pill;

o 0 for every eaten capsule;

e +200 for every killed ghost;

e +500 upon victory (eating all pills);

¢ -500 upon defeat (being eaten by a ghost).

Notice that this implementation is slightly different from
the most popular ones in Al literature, such as those used in
the Ms. Pac-Man C()mpetitimﬂ and in the Ms. Pac-Man vs
Ghost-Team Competitiorﬂ In particular, in this implementation
there is a time-step penalty and the behaviour of ghosts is
more simplistic, each ghost deciding a random direction at
every intersection. The simulator we chose is, however, not
uncommon, and has in particular been used in [21].

State space: Each state of the game is characterised by
distance and direction from the closest of each of the following:
capsule, food, scared ghost and non-scared ghost.

The distance information can assume values close, midrange
and far, depending on the length of the shortest path as com-
puted by the Dijkstra algorithm [29]. Directional information
represents the direction that Pac-Man should follow to reach
said objects via the shortest path.

Uhttp://www.numpy.org/

Zhttp://www.gnu.org/software/parallel/
3http://www.gamasutra.com/view/feature/3938/the_pacman_dossier.php
4http://ai.berkeley.edu
Shttp://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html
Ohttp://csee.essex.ac.uk/staff/sml/pacman/kit/Agent VersusGhostsOld.html

http://www.numpy.org/
http://www.gnu.org/software/parallel/
http://www.gamasutra.com/view/feature/3938/the_pacman_dossier.php
http://ai.berkeley.edu
http://dces.essex.ac.uk/staff/sml/pacman/ PacManContest.html
http://csee.essex.ac.uk/staff/sml/pacman/kit/AgentVersusGhostsOld.html

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. Y, MONTH YEAR 4

Automatic agents: The experiments compare the goals
detected by the algorithm from two automatic agents. That is,
these automatic agents are two of the experts in our setting.

Both agents include a perfect model of the game. They both
compute a heuristic value for the state that would follow each
available action, and select the best one. The score is computed
taking into account information about non-scared ghosts and
pills as follows:

ceore. — 47 max (0,7 — g)* — &5
¢ —max(0,7 — g)% + 1000 otherwise

if there are pills

3)
where g is the length of the shortest-path to the nearest non-
scared ghost and p is the length of the shortest-path to the
nearest pill.

Conservative agent: The first agent, which we call con-
servative, uses Equation E] as is to evaluate the states’ value.
This formula encourages reaching the closest pill while staying
7 steps away from the closest non-weak ghosts. The agent,
thus, avoids taking risks and stays at a safe distance from
threats. While this does not take into account the possibility
of ambushes, it is effective in practice.

Aggressive agent: The second agent, which we call aggres-
sive, takes into account the same information as the conservative
as well as information on scared ghosts and capsules. The
formula it uses is as follows:

score, = score, — 1000 - ¢ —100-n — 10 - w, 4

where c is the number of capsules present on the level, n is the
number of scared ghosts and w is the length of the shortest-
path to the nearest scared ghost. The formula in Equation 4]
encourages eating capsules and scared ghosts. This behaviour
is risky because it does not take into account for how long the
ghosts are going to remain scared.

Human players: The other two experts in our experiments
are humans. Specifically, two of the authors played Pac-Man
on a small level and all of their games are recorded and treated
as experts data.

B. Experimental procedure

The structure of the experiments for
A € {cons, aggr} (Section is as follows:

1) Sets Dcons and Dager of 1000 games are recorded for
each automatic agent.

2) Sets Dp; and Dp, of 30 games are recorded from two
of the authors.

3) A model of the environment T is learned analysing all
the above mentioned games.

4) Algorithm [T) is used to extract goals from games:

5) For each A € {Cons, Aggr, P1,P2}:

a) Ga = WY cp, EXTRACT_GOALS(T, d), where
|t} indicates a multiset sum. A multiset is a set
where information about the number of occurrences
of each element is preserved. Notice that Algorithm
[returns a multiset.

b) States with equal values for selected features (see
subsection at the end of this section for details)

each agent

are aggregated; let F' be the set of such features:
Gaw = {s; € § | Ip(s;) = v}, for all
combinations v of features in F', where 1l is the
relational algebra projection operator, which strips
the input of all features except those in F'. Notice
that each G 4 ,, is a multiset, as opposed to a set.
¢) Rank all multisets G 4, based on their cardinality
in descending order.
d) For each of the first top 4 multisets G of goals:
i) Reward function R is created; R is 0 everywhere
except for states in G, where it is 0;
ii) Value Iteration is run with reward R and model
T to find policy T;
Set G is computed: all states that can indirectly
reach states in G are included in G ;
iv) An option o = (Z,,) is created:

o T =T,
02 ifseG \G
1 otherwise

v) ois added to O4

An extra set of options is then created: Ogy,, containing
the options proposed in [21] for Pac-Man; namely: go to the
closest food, go to the closest capsule, go to the closest ghost,
avoid the closest ghost; policies are handcrafted, termination
probability is 0.2, initiation set is S.

Q-learning is then run 200 times for 3000 episodes with
agents using A, AU Ogeer, AU Ocons, AU Opy, AU Opy or
A U Ogupr as the options sets.

Features: The features in F', which we used to aggregate
goals, are those that do not carry directional information. This
choice was made to address redundancy in the goals and
also by the limited utility of directional information in the
definition of goals. Since directional information is descriptive
of specific details rather than high-level ideas, it is less useful
to characterise a goal.

iif)

V. RESULTS

In this section we report the results of our experiments. First,
we quantitatively analyse the data, and then we discuss the top
detected goals and the performance of Q-learning with and
without options learned with our algorithm.

Q-learning performance

The experiments showed that using options learned by our
algorithm leads to final better performance than using the
options proposed in [21]]. Figure [I] shows the distribution of
per-episode total reward for each agent over all episodes, while
Figure [2| shows it for 300 extra episodes run after learning, with
exploration and learning deactivated. It can be observed that
our approach produces superior final performance to that of
[21], while being inferior during learning. This is confirmed by
a statistical analysis: we computed the effect size between all
pairs of agents. Table [I| reports the two-samples t-tests p-values
and the Cohen coefficients found for the largest effect sizes.
All of the p-values are < 0.001, normally considered small,

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. Y, MONTH YEAR

1400 Ayerage §core pgr episogle 1600 Alerage §core pe:r episogle Stronger Weaker Eff size p—value
| i | | il R + 3 Aggr. No opt. | 2.123 < 0.001
M F L A Cons. | Noopt. | 1738 | <0.001
£ 1200} S SRS R R % 1400 - E : P2 No opt. | 1.527 < 0.001
s i i + # s T Agegr. Subr. 1.466 < 0.001
& 1100(Ea -+ ;,r E} & 1300(EE’ ! : ! ! Pl No opt. | 1.230 < 0.001
g ! . g R i Cons. Subr. 1.017 < 0.001
& 1000 o il E] i + & 1200 oL ¥ : ES Aggr. P1 0.865 < 0.001
< == L+ < ! t P2 Subr. 0.848 < 0.001
00T - 11007 Ager. P2 0.791 < 0.001
800 : : : : : 1000l : : : : i P1 Subr. 0.662 < 0.001
9@“&6‘ (,09‘\0‘\ _o?‘\ov \,OQX\O“ 10"(\0‘\ o 5o 9@“&& vo?.@o‘\‘" _09(\0“6 \,0"‘\0‘\6 109(\0‘\6 o 2o
ov 2% o ® X o Qv oo o ® ® o Table 1
o o o~ Qv o x o X o X ov ov o X .
Largest effect sizes of average reward per
Figure 1. Per-episode return during learning, Figure 2. Per-episode return after learning, averaged episode after learning (as in Figure @

averaged over 3000 games and 200 repetitions. over 300 games and 200

Score, avg over 200 reps Eaten ghosts, avg over

repetitions.

200 reps

Ranking of goals

1600 3.0 - T
o —_ B FCF,-
= || FMF,-

1400 - = FC-F

L T e B e
e 251 = -FF-

— - = - CF-

1200} % / 10 MF
Yy =

/ 2.0} S 3 -Cor)
1000} / e SR s = FCFF
YA A e L o 4 S e W #* 0 MCF,

© 2 - B FCM,
£ wo T =
@ g P ol
= == -CFF

600 |/ o P e s s s s s e e -
101 102
-
400 Aggressive P1 P2 Conservative
Players
— QL standard — QL + Subr. options 05F — QL standard — QL + Subr. options

QL + aggr. options
QL + cons. options = = Conservative
QL + P1 options 31

— QL + P2 options - P2

200 Aggressive

QL + P1 options
— QL + P2 options

QL + aggr. options
QL+ cons. options = -

Aaressive Figure 5. Frequency of use per player of the 12 most
n used goals (Y axis has a logarithmic scale). The values in

- P2
the legend characterise each goal; they indicate, in order:

0.0

1500
Episodes

500 1500 2000 100

Episodes

1000 2500 3000 500

Figure 3. Episode score (average across 200 Figure 4. Eaten ghosts per e

runs, moving average of size 200.)

and most of the effect sizes are > 0.8, normally considered
large. This confirms that the differences found are unlikely to
be due to chance and large enough to be of practical relevance.
Performance of all the agents over time is shown in Figure
Bl It is interesting to observe that the skill showed in the
demonstrations does not seem to correlate with the performance
of the learning agents. The difference in performance between
the agents can be explained in most cases by the number of
eaten ghosts, as shown in Figure[d] In fact, it seems agents using
options produced by our approach show superior performance
for this reason: the agent using options from [21]] (labeled “QL
+ Subr. options”) is the only outlier, being surpassed quite early
during learning in terms of eaten ghosts, but maintaining an
advantage in terms of reward (i.e., score) for some time.

Extracted goals

Analysing the extracted goals can give useful insights into
how the proposed algorithm works. Figure [5] shows the 12 most
used goals (across all players); for each goal and each player,
it shows the relative frequency of use. From the figure, it is
possible to infer what are the most used goals for each player
and, therefore, the options generated (the top 4) for each agent.
The features used to describe goals are, in order, distance from
the closest capsule, the closest food, the closest non-scared
ghost and the closest scared ghost. For brevity, we will indicate
them as (C,F,NSG, SG) in the following discussion.

across 200 runs, moving average of size 200.)

2000 2500 3000
distance from the closest capsule, food, non-scared ghost

and scared ghost. Abbreviations: - is none, C is close, M
is mid-range, F is far.

pisode (average

Figure [3] gives insights on the strategy preferred by each
player. Most noticeable is that all players have a strong pref-
erence for goals (far, close, far, none) and (far, mid, far, none),
indicating a tendency to stay away from non-scared ghosts
(NSG = far) and to go after food (F = close and F = mid).

The conservative agent has the strongest tendency to ig-
nore scared ghosts, as indicated by its preference for goal
(far, close, none, far) over (far,mid, far,none) (in particular,
SG = far). The other goal in the top 4 of the conservative
agent is (none, close, none, far), again indicating a tendency to
leave scared ghosts alone (SG = far) but, at the same time, to
eat capsules (C = none).

On the other hand, the aggressive agent shows a strong pref-
erence for eating scared ghosts, as indicated by its preference
for goals (none, far, far, none) and (none, mid, far, none), both
having C = none and SG = none; i.e., all capsule eaten and no
scared ghosts alive. Reaching these conclusions from the table
is not intuitive because our approach is based on detection
of goal states rather than actions. Figure [3] shows, as goals,
the states following the action of eating. On the other hand,
a human would intuitively consider the action of eating as a
goal in itself. While this is not possible to detect with our
algorithm, it is a direction for future research to narrow the
gap between human reasoning and the algorithm output.

Interestingly, both human players are more flexible in terms
of how near they dare to be to non-scared ghosts, as indicated

REFERENCES

by goal (far, close, mid, none); this is an obvious consequence
of the difference between hard-coded rules and fuzzy brains,
but it is remarkable that the algorithm detected it. This is also
confirmed by another behaviour of the automatic players, which
use goals (none, far, far, none) and (none, mid, far, none) more
often than human players: the automatic agents will always
move away from food in order to stay away from ghosts since
it is in their rules; the human players, on the other hand, are
prone to taking risks.

Comparison with Subramanian et al. : As stated before, the
work most similar to ours in the literature is [21]]. We realise
that, during learning, agents using our options produce inferior
performance compared to that of an agent using options by
Subramanian et al. However, our approach produces superior
performance after learning. In addition, our approach does
not require users to perform any specific tasks other than
playing the game; conversely, in [21]], participants were asked
to explicitly contribute suggestions on how to improve the Al
We believe there is value in the weaker assumptions of our
approach.

The difference in performance between our experiments
and those reported in [21] can be explained by the different
state representations and Q-learning algorithms used: in [21]],
the state representation is richer than ours, and they used
approximated Q-learning to handle it; we, on the other hand,
are using tabular Q-learning, which cannot handle a state
representation as rich. We chose to use tabular Q-learning
because our extraction algorithm can be simply defined
on a discrete state-space; however, extending this work to
approximated Q-learning is a promising avenue of future
research.

VI. CONCLUSION

In this work, we investigated whether options learned from
expert demonstrations extracted by our novel algorithm can
improve the performance of Q-learning. We have extended the
algorithm proposed in [23] that extracts sub-goals from expert
demonstrations and builds options based on them. We tested
the algorithm in a more complex scenario, the video game Pac-
Man. We compare our approach to the work by Subramanian
et al. [21]. In our experiments, agents using options generated
by our algorithm, on average, produce better final performance
than the agent using options proposed in [21]. The results we
obtained suggest that our option-learning framework provides
a viable way for harnessing expert knowledge. A comparison
with other methods in the same family would nevertheless be
interesting.

The proposed algorithm can be improved: currently, our
approach relies on domain knowledge regarding what features
are to be ignored for aggregating states. Possible future work
may include a mechanism to learn these features from the
demonstrations themselves. Another important limitation of
this work is that the approach relies on tabular Q-learning, as
opposed to approximated Q-learning. Improving this aspect will
allow the algorithm to deal with richer state representations.
Another avenue for future work is to replace multi-peaked
rewards with potential-based shaping rewards, which could

bias the agents even better during learning [30]]. Finally, the
goals learned by our technique could prove useful tools to
characterise player styles; we therefore envision a larger study
to investigate such application.

ACKNOWLEDGEMENTS

The authors acknowledge support from ARC LP130100743.
We would like to thank the RMIT VxLab for their support.

REFERENCES

[1] P Stone and R. S. Sutton, “Scaling reinforcement learning toward robocup
soccer”, in Proceedings of the Eighteenth International Conference on Machine
Learning, ser. ICML 01, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 537-544.

[2] J. Baxter, A. Tridgell, and L. Weaver, “Knightcap: A chess programm that learns
by combining TD(lambda) with game-tree search”, in Proceedings of the Fifteenth
International Conference on Machine Learning, ser. ICML ’98, San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp. 28-36.

[3] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey”, English, in
Reinforcement Learning, ser. Adaptation, Learning, and Optimization, M. Wiering
and M. van Otterlo, Eds., vol. 12, Springer Berlin Heidelberg, 2012, pp. 579-610.

[4] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang, “Autonomous inverted helicopter flight via reinforcement learning”,
English, in Experimental Robotics IX, ser. Springer Tracts in Advanced Robotics,
J. Ang Marcelo H. and O. Khatib, Eds., vol. 21, Springer Berlin Heidelberg, 2006,
pp. 363-372.

[5] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-Art, ser.
Adaptation, Learning, and Optimization. Springer-Verlag Berlin Heidelberg, 2012.

[6] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning”, Artificial
Intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

[71 N. K. Jong, T. Hester, and P. Stone, “The utility of temporal abstraction in
reinforcement learning”, in Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems - Volume 1, ser. AAMAS
’08, Estoril, Portugal: International Foundation for Autonomous Agents and
Multiagent Systems, 2008, pp. 299-306.

[8] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in rein-
forcement learning using diverse density”, in Proceedings of the Eighteenth
International Conference on Machine Learning, ser. ICML °01, San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 361-368.

[91 M. Stolle and D. Precup, “Learning options in reinforcement learning”, English, in

Abstraction, Reformulation, and Approximation, ser. Lecture Notes in Computer

Science, S. Koenig and R. Holte, Eds., vol. 2371, Springer Berlin Heidelberg,

2002, pp. 212-223.

I. Menache, S. Mannor, and N. Shimkin, “Q-cut—dynamic discovery of sub-

goals in reinforcement learning”, English, in Machine Learning: ECML 2002, ser.

Lecture Notes in Computer Science, T. Elomaa, H. Mannila, and H. Toivonen,

Eds., vol. 2430, Springer Berlin Heidelberg, 2002, pp. 295-306.

M. Pickett and A. G. Barto, “Policyblocks: An algorithm for creating useful

macro-actions in reinforcement learning”, in Proceedings of the Nineteenth Inter-

national Conference on Machine Learning, Morgan Kaufmann, 2002, pp. 506—

513.

S. Mannor, I. Menache, A. Hoze, and U. Klein, “Dynamic abstraction in

reinforcement learning via clustering”, in Proceedings of the 21st International

Conference on Machine Learning, ser. ICML *04, Banff, Alberta, Canada: ACM,

2004, pp. 71-78.

0. Simgek and A. G. Barto, “Using relative novelty to identify useful temporal

abstractions in reinforcement learning”, in Proceedings of the 21st International

Conference on Machine Learning, ser. ICML *04, Banff, Alberta, Canada: ACM,

2004, pp. 95-102.

0. Simsek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals in

reinforcement learning by local graph partitioning”, in Proceedings of the 22nd

International Conference on Machine learning, ser. ICML ’05, Bonn, Germany:

ACM, 2005, pp. 816-823.

A. Bonarini, A. Lazaric, and M. Restelli, “Incremental skill acquisition for self-

motivated learning animats”, English, in From Animals to Animats 9, ser. Lecture

Notes in Computer Science, S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam,

D. Marocco, J.-A. Meyer, O. Miglino, and D. Parisi, Eds., vol. 4095, Springer

Berlin Heidelberg, 2006, pp. 357-368.

A. Jonsson and A. Barto, “Causal graph based decomposition of factored MDPs”,

J. Mach. Learn. Res., vol. 7, pp. 22592301, Dec. 2006.

N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich, “Automatic discovery and

transfer of maxq hierarchies”, in Proceedings of the 25th International Conference

on Machine Learning, ser. ICML ’08, Helsinki, Finland: ACM, 2008, pp. 648—

655.

C. M. Vigorito and A. G. Barto, “Intrinsically motivated hierarchical skill

learning in structured environments”, [EEE Transactions on Autonomous Mental

Development, vol. 2, no. 2, pp. 132-143, Jun. 2010.

P. Zang, P. Zhou, D. Minnen, and C. Isbell, “Discovering options from example

trajectories”, in Proceedings of the 26th Annual International Conference on

Machine Learning, ser. ICML °09, Montreal, Quebec, Canada: ACM, 2009,

pp. 1217-1224.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. Y, MONTH YEAR 7

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

G. Konidaris, S. Kuindersma, R. Grupen, and A. S. Barreto, “Constructing
skill trees for reinforcement learning agents from demonstration trajectories”, in
Advances in Neural Information Processing Systems 23, J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., Curran Associates, Inc., 2010,
pp. 1162-1170.

K. Subramanian, C. L. Isbell, and A. L. Thomaz, “Learning options through
human interaction”, in In 2011 IJCAI Workshop on Agents Learning Interactively
from Human Teachers (ALIHT), Citeseer, 2011.

A. E. Stahl and L. Feigenson, “Observing the unexpected enhances infants’
learning and exploration”, Science, vol. 348, no. 6230, pp. 91-94, 2015. eprint:
http://www.sciencemag.org/content/348/6230/91 full.pdf,

M. Tamassia, F. Zambetta, W. Raffe, and X. Li, “Learning options for an MDP
from demonstrations”, English, in Artificial Life and Computational Intelligence,
ser. Lecture Notes in Computer Science, S. Chalup, A. Blair, and M. Randall,
Eds., vol. 8955, Springer International Publishing, 2015, pp. 226-242.

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st.
Cambridge, MA, USA: MIT Press, 1998.

C. J. C. H. Watkins, “Learning from delayed rewards.”, PhD thesis, University
of Cambridge, 1989.

S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A structure
for efficient numerical computation”, Computing in Science & Engineering, vol.
13, no. 2, pp. 22-30, 2011.

O. Tange, “Gnu parallel - the command-line power tool”, ;login: The USENIX
Magazine, vol. 36, no. 1, pp. 4247, Feb. 2011.

J. DeNero and D. Klein, “Teaching introductory artificial intelligence with pac-
man”, in Proceedings of the Symposium on Educational Advances in Artificial
Intelligence, 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transfor-
mations: Theory and application to reward shaping”, in ICML, vol. 99, 1999,
pp. 278-287.

Marco Tamassia is a Ph.D. student in RMIT Univer-
sity (Melbourne, Australia), supervised by Dr. Fabio
Zambetta. In his Ph.D., he has been working on
Reinforcement Learning, Augmented Reality and
Video Games. He obtained his B.CompSci and
M.CompSci in University of Verona and has been
a Research Fellow in the PAVIS lab. at the Italian
Institute of Technology (IIT), where he worked on
Multi-Agent Coordination Systems. He is a member
of the RMIT Evolutionary Computing and Machine
Learning Group (ECML).

William L. Raffe is a Research Fellow at the
School of Science (Computer Science and Soft-
ware Engineering) at RMIT University (Melbourne,
Australia), where he also previously received a
B.CompSci(Honours) in 2009 and a PhD(CompSci)
in 2014. His research focus revolves around a variety
of game design and computational intelligence topics,
including player modelling, virtual agent learning and
control, search-based procedural content generation,
game analytics, and human computer interaction in
augmented and virtual reality. He is a senior member

of the RMIT Evolutionary Computing and Machine Learning Group (ECML)
and of the Artificial Intelligence and Game Design node of the Centre for
Game Design Research (CGDR).

Fabio Zambetta is a Senior Lecturer at RMIT
University, Australia where he coordinates the Games
and Graphics Programming degree. His main research
interests include artificial intelligence in games,
reinforcement learning and virtual, augmented, mixed
reality. He is an IEEE member and a member of the
IEEE Games Technical Committee.

Florian “Floyd” Mueller is a professor at RMIT
University, directing the Exertion Games Lab. The
Exertion Games Lab works on supporting people
experiencing their bodies as digital play, situated
within a broader interaction design agenda that
supports people’s values such as an active life. Floyd
has been a Fulbright Fellow at Stanford University,
having worked on the topic of exertion games across
four continents, including at organizations such as
the MIT Media Lab, Media Lab Europe, Fuji-Xerox
Palo Alto Laboratories, Xerox Parc, the University
of Melbourne, CSIRO and Microsoft Research Asia.

Xiaodong Li (M’03-SM’07) received his B.Sc. de-
gree from Xidian University, Xi’an, China, and Ph.D.
degree in information science from University of
Otago, Dunedin, New Zealand, respectively. He is
a Professor with the School of Science (Computer
Science and Software Engineering), RMIT University,
Melbourne, Australia. His research interests include
evolutionary computation, neural networks, data
analytics, multiobjective optimization, multimodal
optimization, and swarm intelligence. He serves as
an Associate Editor of the IEEE Transactions on
Evolutionary Computation, Swarm Intelligence (Springer), and International
Journal of Swarm Intelligence Research. He is a founding member of IEEE CIS
Task Force on Swarm Intelligence, a vice-chair of IEEE Task Force on Multi-
modal Optimization, and a former chair of IEEE CIS Task Force on Large
Scale Global Optimization. He is the recipient of 2013 ACM SIGEVO Impact
Award and 2017 IEEE CIS "IEEE Transactions on Evolutionary Computation
Outstanding Paper Award".

http://www.sciencemag.org/content/348/6230/91.full.pdf

	Introduction
	Background
	MDP and Reinforcement Learning
	Options Framework

	Generating Options from Demonstration
	Identifying Useful Subgoals

	Experiments
	Experimental settings
	Experimental procedure

	Results
	Conclusion
	Biographies
	Marco Tamassia
	William L. Raffe
	Fabio Zambetta
	Florian ``Floyd'' Mueller
	Xiaodong Li

