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Abstract. Q-learning associates states and actions of a Markov De-
cision Process to expected future reward through online learning. In
practice, however, when the state space is large and experience is still
limited, the algorithm will not find a match between current state and
experience unless some details describing states are ignored. On the
other hand, reducing state information affects long term performance
because decisions will need to be made on less informative inputs.
We propose a variation of Q-learning that gradually enriches state
descriptions, after enough experience is accumulated. This is coupled
with an ad-hoc exploration strategy that aims at collecting key infor-
mation that allows the algorithm to enrich state descriptions earlier.
Experimental results obtained by applying our algorithm to the arcade
game Pac-Man show that our approach significantly outperforms Q-
learning during the learning process while not penalizing long-term
performance.

1 Introduction

Planning and learning under uncertainty are fundamental problems
in artificial intelligence. A framework to address such problems is
the Markov Decision Process (MDP) [1]. MDPs are based on the
Markov assumption which states that it is sufficient to know the cur-
rent state of the environment to make predictions about the outcome
of actions. One way for an agent to learn useful information about
the environment dynamics is by interacting with it, in a sequence of
observations of state and action. Based on the Markov assumption,
Temporal Difference (TD) algorithms [2] encode useful information
about the environment in the form of associations of states to utilities.
For example, Q-learning, one of the most popular TD algorithms,
associates state-action pairs to future rewards [3]. When a TD agent
needs to make a decision, it will choose the action that is likely to yield
the highest long-term utility value according to previous experience.

If states are rich in information, in the early stages of the learning
process, the agent knowledge of the environment is sparse. If the agent
considers every feature making up the state, it will take a considerable
amount of time to learn associations for all of the many possible states,
especially if outcomes are stochastic. To quote Andre and Russell,
“Without state abstraction, every trip from A to B is a new trip” [4].
During this learning period, an agent may make blind decisions due to
“details” in the state preventing an exact match with past experience.
TD agents lack the ability to use knowledge of states similar to the
current one. This research problem falls under the umbrella of Transfer
learning [5].

The most common approach to address this issue is to use linear
approximation [6], [7]. In this instance, an agent only has to learn the
weights of the linear transformation mapping state features to utility.

However, a linear approximation may not be sufficient if non-linear
dynamics exist in the environment. In this case, sparsity issues are
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addressed by stripping states of “superfluous” details. This process
is called state abstraction, and it consists in aggregating states. By
only considering the most important information and ignoring details,
two states that are effectively different will appear the same, inducing
a partitioning of the state space. The drawback of this, however, is
that if the information used to encode states is not rich enough, the
agent will not be able to make informed decisions. Examples of this
approach are coarse coding and tile coding [1].

State abstraction has attracted attention in the reinforcement learn-
ing community in the past two decades. Most of the literature on
the subject focuses on choosing an abstraction prior to the actual
learning [8]–[11]. McCallum’s work, however, explored online state
abstraction, which is also the focus of our work. [12]–[14].

In this paper we propose an algorithm that shifts from coarse parti-
tionings to more fine-grained ones through time. The choice of which
partitioning to use is done at every step and can be different from
state to state, allowing for more flexible learning. The criteria used
by our algorithm to decide when to enrich state information is to
compare the confidence interval of utility estimates. The idea is that,
at the beginning of the process, most decisions are made using coarse
partitionings while, in the long run, more choices are made with more
informative partitionings. To our knowledge, this is the first attempt
to combine both coarse and fine-grained partitionings online.

We evaluate our algorithm by comparing it with Q-learning in the
context of the video game Pac-Man. Our experiments show that the
proposed algorithm produces better performance than fixed state-size
Q-learning during the learning phase. We also propose a strategy to
direct exploration in a way that allows the algorithm to switch to
fine-grained abstractions earlier. Experiments show that this strategy
produces better performance than the standard ε-Greedy.

The paper is structured as follows: in Section 2 we introduce
Markov Decision Processes and Q-learning and provide an overview
of the relevant literature; in Section 3 we introduce our algorithm and
our ad-hoc exploration strategy; in Section 4 we detail the setup of our
experiments and in Section 5 we report the results of our experiments.

2 Background and Notation

A Markov Decision Process is formally defined by a tuple M =
(S,A, T, R, γ), where S is the set of all possible states of the envi-
ronment; A is the set of actions the agent can perform; T : S ×A →
P(S) associates a state-action pair to a next state probability distribu-
tion; R : S×A → R associates a state-action pair to a reward; γ < 1
is a discount factor used to decrease the value of future rewards.

An agent interacting with the environment, tries to maximize the
cumulative reward collected over time. While interacting with the
environment, the agent collects information: at time t, after observing
state st, it decides which action at to perform and observes the reward
rt it receives and the next state st+1 to which the environment tran-
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sitions. Collected information can be used to make informed future
decisions.

An effective way to achieve optimal decision making is to compute,
for all s ∈ S and a ∈ A, an estimate Q∗(s, a) of the expected cumu-
lative reward to be expected by taking action a while in state s and
behaving optimally afterwards. Then, the optimal policy π∗ is defined
as: π∗(s) = argmaxa∈A Q∗(s, a). The Q-learning algorithm [3]
updates of the estimates after each step of the agent according to the
following rule:

Q(st, at)
α← rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at),

where x
α← y is short for x ← x+ αy and 0 < α ≤ 1 is a learning

factor.
Since the agent starts the process with no information about the

environment, it needs to balance exploration of the environment with
exploitation of the current knowledge. This is to avoid focusing on
what the agent believes to be the best action and missing the actual
best action due to incomplete knowledge. A common exploration
strategy, which we also use in this work, is called ε-greedy and is
defined as follows:

πε(s) =

{
argmaxa∈A Q(s, a) with prob. 1− ε

random(A) with prob. ε
,

where 0 ≤ ε ≤ 1 balances exploration and exploitation.
Q-learning is said to learn “off-policy”; this means that, in the

long run, its estimates Q(·, ·) approximate the exact values Q∗(·, ·)
regardless of what policy the agent is following2. This allows an agent
to learn the optimal policy while using a sub-optimal exploration-
oriented policy, such as ε-greedy.

Related work

Significant research effort has been directed in state abstraction. How-
ever, most of the work has been focused on choosing an abstraction
prior to the learning phase. Many papers fall in this area: [8] use hy-
pothesis testing to discover useful abstractions using Q-values learned
in multiple runs; [9] select the features that are useful to reproduce
the behavior of a given set of demonstrations; [10] use time-series
data to select among the models provided by a human expert; [11]
provide theoretical guarantees on the used abstraction, but their ap-
proach requires the use of value iteration, an expensive, model-based
algorithm [1].

In the recent years there has been work at the intersection of Deep
Learning and Reinforcement Learning. In the work by Mnih et al.,
neural networks are able to learn features of the game state from
very unstructured data (such as pixels) [15]. We propose a different
approach: rather than learning features over time from raw data, we
suggest that, given a set of meaningful features, an algorithm can use
more and more of them over time to make its decisions, and that this
can help achieve better performance at the early stages of the learning
process, when knowledge of the environment is still scarce.

Literature covers two different, principled approaches at online
learning of state abstractions:

• adaptively expanding memories to store past information, which is
helpful when past information is relevant to make good decisions
[12]–[14];

• adaptively split tiles in tile coding [1], [16]–[18], which works well
when state features range widely in ordinal values.

2 as long as there is a non-zero probability of visiting each state

The first of these approaches are all works of McCallum. In [12],
he expands temporal memory to distinguish variations in rewards, and
does so via hypothesis testing; this approach, however, is slow because
memory is expanded one step at a time. In [13] he proposes to store
raw history, so when memory is expanded, history can be re-analysed
to properly compute values; this approach, reportedly, does not handle
noise very well. In [14], he proposes to use, along with stored history,
a tree to know how deep (how far back in history) one needs to look
to distinguish situations: branches are added when a statistical test
says that samples come from two different distributions3.

The second approach focuses on tile coding. Tile coding (TC) [1],
[16] is a technique to extract useful features from large state spaces
including widely varying ordinal features. The idea is to produce
multiple discretizations (tilings) of the state features with different
offsets: for each discretization, every tile becomes a state feature all
of which but one are set to zero. To expand on this, Whiteson et al.
propose to adaptively split tiles so as to maximize changes in the
value function or in the policy during learning [17]. More recently, a
paper by Scopes and Kudenko proposes to split tiles that are closer to
the optimal transition path and suggests that perpendicular tiles to the
optimal path can achieve better performance that square tiles.

The approach we propose complements the above mentioned, be-
cause we focus on augmenting the set of features used to describe the
state, as opposed to adding information from the past or augmenting
the granularity within the features. the video game Pacman is one
example of scenario where the mentioned approaches would not work
well. To an agent that already has information about food and ghosts,
it is more useful to know where the closest power capsule is than
it is to know where food and ghosts were in the past. Tile coding
(and derivatives) are also ill-suited to Pacman because the features
have few possible values each, so they would not allow for many
tiles; furthermore,half of the features are not ordinals, making TC
inapplicable on them. TC could possibly be applied to the original
features, but this would mean counting pills per tile, and this, to the
best of our knowledge, has not been tried before and deserves a deep
analysis per se.

3 Dynamic Abstraction Choice

In reality, because environments are often stochastic, a number of
trials are necessary for each state and action pair to evaluate reason-
able estimates. In particular, in the early stages of an agent’s life,
its knowledge is rather sparse, often leading to blind decisions. To
deal with this, a common approach is not to model the entire MDP,
but a simplified one obtained by reducing the state space size via
state aggregation [5], [20]. By means of carefully engineered state
aggregations, Q-learning generalizes well over the little information
it has.

However, it is desirable that in the long-run, the agent makes its
decisions considering all the nuances of each state, rather than based
on coarse aggregations. More information on the state allows the
agent to make more informed decisions.

We propose a novel algorithm to achieve the advantages of both
situations, at the cost of a slight increase in processing time. In the
following, we refer to abstractions as functions mapping a state to an
aggregation of states. Each abstraction induces an abstrated state space
of smaller size than the original one and, consequently, a smaller Q-
table. However, such Q-tables do not need to be memorized since they
can be inferred by appropriately aggregating entries of the original
Q-table.
3 The test used is Kolmogorov-Smirnov [19]
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Algorithm 1: Multi-Abstraction Q-learning algorithm for abstrac-
tion shifting.

⊎
indicates a multiset sum; a multiset is a set where

information about the number of occurrences of each element is
preserved. X indicates the sample average. Procedure CI com-
putes the confidence interval of the mean of the given sample.

Input :Learning rate α
Input :Exploration parameter ε
Input :Abstractions β1 > β2 > . . . > βm

Input :Default Q-value, initQ
Input :Significance level for t-tests, σ

1 for s, a ∈ S ×A do

2 Q(s, a) ← initQ
3 H(s, a) ← empty list // history of Q(s, a)

4 end

5 s ← observe state
6 repeat

7 j∗ ← m
8 found ← false
9 for j ← 1 . . .m do

10 ξ ← { s′ ∈ S | βj(s
′) = βj(s) } // siblings

11 for a ∈ A do

12 Xj
a ← ⊎

s′∈ξ H(s′, a) // samples of siblings
13 ⊥j

a,�j
a ← CI(σ,Xj

a) // lower and upper bounds
14 end

15 a∗ ← argmaxa∈A Xj
a

16 if ⊥j
a∗ > �j

a for all a ∈ A, a �= a∗ then

17 j∗ ← j − 1
18 found ← true
19 go to line 22
20 end

21 end

22 a∗ ←
{
argmaxa∈A Xj∗

a with prob. 1− ε

random(A) with prob. ε
23 perform action a∗

24 s′ ← observe state
25 r ← receive reward
26 q̂ ← r + γmaxa′∈A Q(s′, a′)

27 Q(s, a∗) α← q̂ −Q(s, a∗)
28 append q̂ to H(s, a∗)
29 s ← s′

30 until apocalypse

The algorithm we propose, “Multi-Abstraction Q-learning”, is pre-
sented in pseudocode in Algorithm 1. Multi-Abstraction Q-learning
is given a list of abstractions of decreasing granularity, and maintains
the Q-table associated with the original state representation. At deci-
sion time, the algorithm chooses the most granular abstraction whose
Q-values are precise with sufficient confidence.

Formally, an abstraction is defined as βi : S → Si. We also
introduce an ordering for abstractions, based on their granularity.
Formally, an abstraction β is more granular than a second abstraction
β′ (denoted β > β′) if both the following conditions hold:

• Any two states s, s′ ∈ S mapped to the same abstracted state by
(the more granular) abstraction β are also mapped to the same
abstracted state by (the more coarse) abstraction β′. Formally:

∀s, s′ ∈ S . β(s) = β(s′) ⇒ β′(s) = β′(s′)

• There is at least a pair of states s, s′ ∈ S that are mapped to
different abstracted states by (the more granular) abstraction β but
that are mapped to the same abstracted state by (the more coarse)
abstraction β′. Formally:

∃s, s′ ∈ S . β(s) �= β(s′) ∧ β′(s) = β′(s′)

Algorithm 1 is given a list of abstractions of decreasing granularity.
The algorithm decides which action to take by choosing the most
suitable abstraction at every time step. The chosen abstraction is the
most granular one that provides a high confidence that the action with
the highest estimated Q-value is actually the best one. Confidence
of a state-action pair (s, a) is computed by running a t-test over the
history H(s, a) of values that the Q-table entry Q(s, a) has assumed.
The steps used to test the confidence of an abstraction are as follows:

1. the action a∗ with the highest estimated Q-value is found;
2. the boundaries ⊥a,�a of the confidence intervals of all actions a

are calculated;
3. for all a �= a∗, test whether ⊥a∗ > �a: each test is passed with a

1− σ confidence level;
4. if all the tests are passed, it is reasonable to assume that the true

Q-value of a∗ is actually the highest.

Optimization

The procedure described in Algorithm 1 has some significant ineffi-
ciencies. However, notice that they can be overcome and have been
introduced in the listing for the purpose of clarity. In the follwing
paragraphs, we briefly explain how to address these issues.

There are two main bottlenecks. The first is at line 12, where the
union operation iterates over all the states to find the siblings. This
adds a significant amount of computational time to compute the same
information repeatedly. In fact, caching the state space partitioning
(i.e. the sets of “siblings”) for each abstraction is a better solution.
By doing so, the time complexity of retrieving such information is
constant at the cost of a linear (in the number of states and abstractions)
increase in memory complexity.

The second bottleneck is the procedure at line 13 which computes
the confidence intervals. The procedure iterates over the whole set Xj

a

of samples at every invocation to compute their mean and variance.
An alternative, more efficient solution is to store mean and variance
of the Q-value for every state-action pair and update them online [21].
It is, then, possible to efficiently compute mean and variance of a
virtual union set by aggregating the stored statistics [22]. This modifi-
cation makes storing the history of Q-values unnecessary, significantly
reducing the space requirements of the algorithm.

Confidence driven exploration

While ε-greedy is expected to shrink the confidence intervals in the
long run through random exploration, it has no awareness of their
existence. It is reasonable to suppose that using a different explo-
ration strategy making use of this knowledge would produce better
results. Such a strategy would bias the exploration so as to perform
actions whose confidence intervals are preventing the use of the next
abstraction. We propose a variation on the traditional ε-greedy strat-
egy that integrates such bias. The close-form definition is slightly
cumbersome; so, with clarity in mind, we provide the pseudocode
instead. The pseudocode in Algorithm 2 describes such procedure and
is meant to replace line 22 of Algorithm 1.
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Algorithm 2: C.I. driven exploration.

1

⎧⎪⎨
⎪⎩

return a∗ with prob. 1− εCI − εR

return random(A) with prob. εR

go to line 11 with prob. εCI

2 if j∗ = 1 // most granular abstraction already in use then

3 return a∗ // no exploration needed
4 end

5 if found // acceptable abstraction found then

6 ĵ ← j∗ − 1 // use it
7 else

8 ĵ ← m // use the most coarse one
9 end

10 a∗ ← argmaxa∈A X ĵ
a

11 K1 =

{
a ∈ A

∣∣∣∣ �ĵ
a > X ĵ

a∗

}

12 K2 =

{
a ∈ A

∣∣∣∣ X ĵ
a > ⊥ĵ

a∗

}
13 if K1 �= ∅ andK2 �= ∅ then

14 return random(K1 ∪ { a∗ })
15 else if K1 �= ∅ then

16 return random(K1)
17 else

18 return a∗

19 end

This procedure requires two parameters εCI and εR, which set the
probability of exploring versus exploiting, similarly to ε-greedy. Un-
like ε-greedy, however, this procedure performs a second type of
exploration. That is, with probability εCI, it selects an action whose
confidence interval needs to be reduced in order for the next abstrac-
tion to be usable.

Figure 1 shows a qualitative representation of the reasoning behind
Algorithm 2. Depicted are the different possible situations in which
confidence intervals of actions a∗ (action with the highest mean) and
a overlap. On top of each subfigure, the behavior of the algorithm
in lines 11–12 is reported. Notice that in many cases there will be
multiple actions matching the criteria of a: in such cases the choice is
random among them. For the sake of concisenes, in the remainder of
this section as well as in Algorithm 2 we will refer to the confidence
interval of the estimate of the average Q-value of action a simpy as
the confidence interval of a.

Line 11 of Algorithm 2 captures cases shown in figures 1a, 1b,
1e, 1f, 1g, where the upper bound of the confidence interval of some
action a is higher than the average Q-value of the best action a∗.
Such actions are stored in set K1. Line 12 of Algorithm 2 captures
cases shown in figures 1c, 1d, 1e, 1f, 1g, where the average Q-value
of some action a is higher than the lower bound of the confidence
interval of the best action a∗. Such actions are stored in set K2.
Algorithm 2 makes the simplifying assumption that further samples
will shrink the confidence intervals without moving the average value.
Notice that this does not introduce bias since the average value is an
unbiased estimate of the mean value. With this assumption in mind,
the procedure selects:

• a random action from K1 if K1 �= ∅ and K2 = ∅ because the only
way to remove the overlaps of the confidence intervals is to shink
those of the actions in K1;

a ∈ K1
a /∈ K2

(a)

a ∈ K1
a /∈ K2

(b)

a /∈ K1
a ∈ K2

(c)

a /∈ K1
a ∈ K2

(d)

a ∈ K1
a ∈ K2

(e)

a ∈ K1
a ∈ K2

(f)

a ∈ K1
a ∈ K2

(g)

a /∈ K1
a /∈ K2

(h)

Figure 1: A visual qualitative representation of the possible situations
in which confidence intervals overlap. Here, a∗ is the action with
the highest mean and a is another action. When confidence inter-
vals overlap, the confidence level cannot be guaranteed. On top of
each subfigure, the decision made by Algorithm 2 at lines 11–12 is
indicated.

• a∗ if K1 = ∅ and K2 �= ∅ because, while choosing actions
from K2 would also be an effective way to remove the overlaps,
choosing a∗ is the choice with the highest expected future reward;

• a random action from K1 ∪ {a∗} if K1 �= ∅ and K2 �= ∅ because
of the same reasons explained above.

Notice that the case where K1 = ∅ and K2 = ∅ is only possible if
the all the abstractions are usable, but this case is captured in lines
2–4. Following this strategy, confidence intervals that are overlapping
will shink until they do not overlap anymore, therefore allowing the
usage of the next abstraction, until the most fine-grained abstraction
is usable.

4 Experiments

We evaluate the effectiveness of our algorithm using Pac-Man, a real-
time arcade retro game4. Games of this type are of interest to the

4 Additional information can be found at http://www.gamasutra.
com/view/feature/3938/the_pacman_dossier.php?
print=1 (checked on March 3rd, 2016).
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scientific Artificial Intelligence community due to the challenges of
open-endedness and tight time-constraints they pose [23]. Pac-Man
has been used as test-bed in a sizable amount of literature, including
[24]–[26]. We adopted the implementation currently used in UC
Berkeley to teach AI, originally developed by DeNero and Klein
[27]5. Our algorithms were implemented in Python using the Numpy
library6 [28] and parallelized using GNU Parallel7 [29].

Pac-Man

In the game, the player controls Pac-Man, an agent moving in a two-
dimensional environment whose purpose is to maximise a score. The
score increases by collecting food pills while steering clear of ghosts,
which will kill Pac-Man when colliding with it. Special capsules in
the game area can be picked up by the player that make all the ghosts
edible for a limited period of time. If Pac-Man collides with an edible
ghost, the ghost dies and reappears at the center of the game area
in a threatening (non-edible) state. The level topology used in the
experiments is depicted in figure 2. This is not a standard Pac-Man
level, but a simpler one provided with the codebase. We chose this
because experiments require less computational time.

Figure 2: A screenshot of the video game used in the experiments,
Pac-Man.

Players receive a score based on their performance. In the imple-
mentation we used, Pac-Man receives 10 points for each eaten pill,
and it loses 1 point at each time step, while receiving 200 points
every time a ghost is killed. Furthermore, 500 points are earned upon
victory (i.e. when all the pills have been eaten), while 500 points are
lost upon death. These scores have been chosen by the developers of
the framework, and we adopt them without changes in this work.

Tests

The first question we wanted to answer is what significance setting σ
yields the highest performance in Multi-Abstraction Q-learning (Algo-
rithm 1) with εCI strategy. To answer this question, we tested the algo-
rithm with σ ∈ {0.1, 0.2, 0.5, 0.9}. All the configurations used food
and threatening ghosts information to describe states, successively
adding edible ghosts information and, lastly, capsules information;

5 Currently available for download at http://ai.berkeley.edu/
project_overview.html

6 http://www.numpy.org/
7 http://www.gnu.org/software/parallel/

these represents the abstractions βi in Algorithm 1. In these tests, we
set εCI = 0.05 and εR = 0.05.

Secondly, we wanted to evaluate whether shifting abstractions -
from coarse to fine-grained - improves agents performance. To test
this, we ran tests on Pac-Man using different agent algorithms:

• Q-learning where states included food and threatening ghosts in-
formation;

• Q-learning where states included food, threatening ghosts and
edible ghosts information;

• Q-learning where states included food, threatening ghosts, edible
ghosts and capsules information.

We compared the performance of these algorithms with those of the
best configuration from the previous test, that with σ = 0.9. The
exploration strategy used in these three configurations was ε-Greedy
with ε = 0.1.

We ran tests using each of these algorithms for 30000 consecutive
episodes and we measured the reward collected during each of them.
We repeated this 50 times and averaged the results. Agent perfor-
mance is expected to improve over time, as they gather information
on the environment: however, improvement rate and final performance
depend upon the agent algorithm and its state representation.

The final question we wanted to answer is to what degree the
performance of the other experiments are due to Multi-Abstraction
Q-learning versus to the εCI-Greedy strategy. To test this, we ran
experiments using the following algorithms:

• Multi-Abstraction Q-learning with ε-Greedy with ε = 0.1;
• Q-learning with εCI with εCI = 0.05 and εR = 0.05.

We compared the performance of these algorithms with the perfor-
mance of the best configuration in the first experiment, that with
σ = 0.9. The features used in these experiments are the same used in
the first set of experiments; that is, all of them: food, threatening/edi-
ble ghosts and capsules.

State space

Performance of MDPs are heavily influenced by the shape of the state
space. In our experiments, the state space is the cartesian product
of 8 features. Each of the features is related to objects in game;
i.e., threatening/edible ghosts, pills and capsules. Features are either
distance or direction information to such objects.

The “direction” feature specifies the direction that Pac-Man should
follow to reach the closest object of the category. The direction infor-
mation can assume five different values: one for each of the cardinal
directions, plus an additional value used when there are no instances
of the objects; e.g., if all the ghosts are edible, there is no threatening
ghost. In the case of distance, the feature specifies �log2 d�, where d
is the length of the shortest path to the closest object of the category.
Shortest paths are computed by the Dijkstra algorithm for shortest
path on graphs (see [30] for more information). Distance information
can be null as well.

Annealing exploration

We compared different exploration strategies; i.e. ε-Greedy and our
proposal, εCI-Greedy, showed in Algorithm 2. Even though we pre-
sented the naïve versions of the two strategies, in our experiments we
used the simulated annealing version. This technique slowly decreases
the amount of exploration as time progresses, so to gradually shift
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from an exploration policy to the greedy policy over time. In ε-Greedy
policies this is done by decreasing the value of ε. In εCI-Greedy, we
similarly decrease both εR and εCI. The annealing schedule we chose
is based on the sigmoid function, s(x) = 1

1+ex
. Our schedule is

defined as follows:

ε(t) = ε̂ · s (u · (m− t)) ,

where ε̂ is the maximum value for the exploration parameter, t is the
current episode number, m is the desired center for the schedule and
u controls the width of the function.

5 Results

In this section we discuss the results of the experiments we performed.
All the figures in this section are smoothed using a moving average
weighted by a Hanning function. The Hanning function is bell-shaped
and smoothly zeroes at the edges. Using it to weight contributions in
a moving window gives greater importance to central elements while
still taking the surrounding element in account.

In the first experiment, different σ-values are compared in Multi-
Abstraction Q-learning (Algorithm 1) using εCI-Greedy. The scores
achieved by the different configurations are shown in Figure 3a. It is
surprising that the lines dominating the chart are those using 0.5 and
0.9 as σ-values.

The most likely explanation for this is that 0.1 and 0.2 are too
conservative values. While in normal t-tests values of 0.1 are unac-
ceptably high, the trend here is heavily shifted. In fact, orthodox t-tests
assume that the distributions are static over time. Here, however, (ex-
pected) Q-values veer from the common initial value towards their
true values. For this reason, seemingly “premature” Q-values, which
have a “high variance” from a t-test perspective, reliably estimate the
best action.

Figures 4a and 4b show the percentage of decisions that have
been made with each abstraction in successive episodes for the two
configurations σ = 0.2 and σ = 0.5. There is a remarkable difference
in that the former keeps using coarse abstractions throughout the
learning process, while the latter barely uses any, except at the very
early stages.

Figure 3b shows the percentage of victories for the configurations
in the first experiment. The configurations winning the most often
are σ = 0.1 and σ = 0.2. Considering the scores shown in Figure
3a this seems counterintuitive, because one would expect that the
configurations with the highest scores are also those winning the most
often. However, these numbers make sense when the structure of the
game is considered: to maximize the score, Pac-Man needs to eat
ghosts, but that poses an added risk in terms of winning/losing (i.e.
if the ghost suddenly turns back to a threatening status). Figure 3c
shows the average number of ghosts eaten in each successive episode:
it can be observed that there is a significant difference between the
configurations σ = 0.1 and σ = 0.2 and the configurations σ = 0.5
and σ = 0.9. The similarity of the trends showed in Figures 3c and
3a, where dominant configurations are σ = 0.5 and σ = 0.9 in both
cases, supports this theory.

In the second experiment, our technique is compared with three
configurations of Q-learning, each using an increasing amount of
features. Figure 5 compares them to the best configuration of the first
experiment, Multi-Abstraction Q-learning with σ = 0.9.

The curves show that the Q-learning configuration with the least
features, at first, performs the best, showing that using more features at
the beginning worsens the performance. However, this configuration is
later surpassed by the Q-learning configuration using the intermediate

(a) Scores of the games

(b) Victories to total games ratio

(c) Eaten ghosts

Figure 3: Data (y axis) per succesive episode (x axis) using Multi-
Abstraction Q-learning with εCI-Greedy, varying significance parame-
ter.

amount of features, showing that having more features pays off when
sparsity fades out. Finally, the Q-learning configuration using the
most features surpasses both the other two Q-learning configurations.
These trends show how, in normal Q-learning, more features produce
better performance at later stages at the cost of performance in the
early stages.
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(a) σ = 0.2

(b) σ = 0.5

Figure 4: Decisions made with each abstraction (y axis) for each
successive episode (x axis), using different values of significance in
Multi-Abstraction Q-learning with εCI-Greedy. The second plot shows
fewer episodes (x axis) because the more coarse abstractions quickly
become almost unused.

Figure 5: Score (y axis) per succesive episode (x axis) using Multi-
Abstraction Q-learning with εCI-Greedy versus standard Q-learning
with different sets of features.

Except at the very beginning of the process, Multi-Abstraction
Q-learning produces significantly better results than the other con-
figurations. Importantly, it also converges to the same values as the

Figure 6: Score (y axis) per succesive episode (x axis) using Multi-
Abstraction Q-learning with ε-Greedy versus εCI-Greedy.

Q-learning configuration using all of the features: this shows that the
early improvement in performance does not come at the cost of later
performance.

It could be argued that our approach can be replaced by prede-
termined rules. In fact, the intersection points of Q-Learning perfor-
mance curves in Figure 5 provide a clear indication of when it is
convenient to switch abstraction. This would produce better perfor-
mance than any of the three Q-Learning agents. However, because
our approach allows each state to be used at a different abstraction,
it is more adaptive and produces far better performance during the
learning phase, as shown in Figure 5.

It could also be argued that, since the final performance of Multi-
Abstraction Q-learning is the same as that of standard Q-Learning, an
agent might as well just use standard Q-Learning. While this is true,
the advantage of Multi-Abstraction Q-learning is an improvement in
performance during the learning phase as opposed to an improvement
in final performance.

Finally, notice that Algorithm 1 has the same convergence guaran-
tees of Q-learning [31]. This is because the set of features in use at
each state is expanded to the full features set within a finite amount of
time. Notice that Algorithm 2 guarantees at least the same amount of
exploration of ε-greedy.

MQL QL w/4 QL w/3 QL w/2
Mean 1281.07 1152.11 1133.77 1099.25
Std. err 23.71 20.51 9.46 7.62

Table 1: Mean and standard error of the average reward per episode
across the 50 runs of the experiments in Figure 5. Columns report
values, respectively, for Multi-Abstraction Q-learning and for Q-
Learning with features Fd,Gh,ScGh,Cp, Fd,Gh,ScGh and Fd,Gh.

The results of the third experiment are shown in Figure 6. The
experiment shows that Multi-Abstraction Q-learning and εCI-Greedy
do create a synergy in performance. On one side, εCI-Greedy does
not seem to affect the performance of Q-learning; on the other side,
Multi-Abstraction Q-learning without εCI-Greedy performs worse
than Q-learning. However, when Multi-Abstraction Q-learning is
used in concert with εCI-Greedy, they produce better performance
than all other combinations.
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Statistical analysis of Q-learning performance

The experiments showed that Multi-Abstraction Q-learning produces
better performance than Q-Learning with any set of features. To
quantitatively measure the performance of the different configurations,
we computed the average reward per episode for each of the 50 runs
of each of the 3 agents. This operation induces a distributions for each
agent, all of which appear to be approximately normally distributed,
as shown in Figure 7. Table 1 shows the means and standard errors
of the data. Three two-samples t-tests (with unequal variance) have
been executed to pairwise compare the agents sorted by average per-
episode reward. All t-tests determined that the distributions mean are
different with p-value < 0.001, therefore confirming that both agents
using learned options perform significantly better than the agent that
does not use options.

6 Conclusions

In this paper we presented a novel variation of Q-learning, which we
name “Multi-Abstraction Q-learning”. The algorithm we propose uses
different state-abstractions for each state, increasing the level of detail
over time. This allows the agent to overcome the initial sparsity in
its utility estimates, typical of richer state representations. The agent
can still make full use of the maximum level of detail later on in the
learning process. Our experiments show that this algorithm produces
better performance than standard Q-learning.

We also proposed a novel exploration strategy, εCI-Greedy. This
strategy directs exploration to reduce sparsity of information, thereby
allowing the agent to switch to more detailed abstractions earlier.
Our experiments show that this strategy produces better results than
standard ε-Greedy.

The proposed algorithm takes advantage of similarity in Q-values
of similar states. In particular, factored state spaces where states in
(hyper-)rectangular regions share similar values are a good fit for the
algorithm. However, the algorithm just works with increasingly gran-
ular abstractions: it cannot take advantage of redundancy in regions
defined by different sets of features. For example, in the case of Pac-
Man, in states where a threatening ghost is nearby, food information
has a low impact on Q-values, while in states where all threatening
ghosts are distant, the direction from which they are likely to come
has a low impact on Q-values.

To optimize the use of redundancy in these cases, the algorithm
would need to consider multiple, separate sets of features. This means
that the abstractions provided in input should be allowed to form a
lattice, as opposed to just a list. In fact, while a list allows for only
one “line of specialization”, a lattice allows for more possibilities. In
other words, the proposed algorithm does not have a choice in what
information to add over time: it can solely choose when to add it.
Using a lattice, different sets of features could be selected for different
states and they would still all converge to the abstraction with all
features in the end. This is currently the strongest limitation of the
algorithm and is an important direction for future research.

One drawback of our approach is its reliance on meaningful features
and, hence, domain knowledge. An interesting avenue of research is
to investigate a combination of our approach and a general-purpose
function approximation architecture, similar in spirit to [32].

It would also be interesting to combine temporal approaches [12]–
[14] and/or adaptive tile coding approaches [17], [18] with the pro-
posed approach in more complex domains.

Figure 7: Histograms of the average reward per episode.
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